Search results for "Self-excited attractor"

showing 4 items of 4 documents

Hidden and self-excited attractors in radiophysical and biophysical models

2017

One of the central tasks of investigation of dynamical systems is the problem of analysis of the steady (limiting) behavior of the system after the completion of transient processes, i.e., the problem of localization and analysis of attractors (bounded sets of states of the system to which the system tends after transient processes from close initial states). Transition of the system with initial conditions from the vicinity of stationary state to an attractor corresponds to the case of a self-excited attractor. However, there exist attractors of another type: hidden attractors are attractors with the basin of attraction which does not have intersection with a small neighborhoods of any equ…

Chua circuitskaaosteoriapancreatic beta-cellvirtapiiritattraktoritradiophysical generatoroskillaattoritbiofysiikkaNonlinear Sciences::Chaotic Dynamicshidden attractorsbifurkaatiosäteilyfysiikkamultistabilityself-excited attractorskatastrofiteoriamatemaattiset mallitdifferentiaaliyhtälöt
researchProduct

Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity

2015

Abstract In this paper a Lorenz-like system, describing convective fluid motion in rotating cavity, is considered. It is shown numerically that this system, like the classical Lorenz system, possesses a homoclinic trajectory and a chaotic self-excited attractor. However, for the considered system, unlike the classical Lorenz system, along with self-excited attractor a hidden attractor can be localized. Analytical-numerical localization of hidden attractor is demonstrated.

Mathematics::Dynamical SystemsChaoticLyapunov exponentsymbols.namesakeAttractorSelf-excited attractorHidden attractorHomoclinic orbitCoexistence of attractorsMultistabilityMathematicsHomoclinic orbitRössler attractorNumerical AnalysisApplied Mathematicsta111Mathematical analysisLorenz-like systemMultistabilityLorenz systemNonlinear Sciences::Chaotic DynamicsClassical mechanicsModeling and SimulationLyapunov dimensionsymbolsLyapunov exponentCrisisCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Hidden Strange Nonchaotic Attractors

2021

In this paper, it is found numerically that the previously found hidden chaotic attractors of the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors. For a range of the bifurcation parameter, the hidden attractor is manifestly fractal with aperiodic dynamics, and even the finite-time largest Lyapunov exponent, a measure of trajectory separation with nearby initial conditions, is negative. To verify these characteristics numerically, the finite-time Lyapunov exponents, ‘0-1’ test, power spectra density, and recurrence plot are used. Beside the considered hidden strange nonchaotic attractor, a self-excited chaotic attractor and a quasiperiodic at…

Mathematics::Dynamical SystemsGeneral MathematicsChaoticattraktoritLyapunov exponenthidden chaotic attractor01 natural sciencesStrange nonchaotic attractor010305 fluids & plasmassymbols.namesakeFractalRabinovich–Fabrikant system0103 physical sciencesAttractorComputer Science (miscellaneous)Statistical physicsdynaamiset systeemitRecurrence plot010301 acousticsEngineering (miscellaneous)BifurcationPhysicskaaosteorialcsh:Mathematicslcsh:QA1-939strange nonchaotic attractorself-excited attractorNonlinear Sciences::Chaotic DynamicsQuasiperiodic functionsymbolsfraktaalitMathematics
researchProduct

On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rossler systems

2019

In this paper, on the example of the Rössler systems, the application of the Pyragas time-delay feedback control technique for verification of Eden’s conjecture on the maximum of local Lyapunov dimension, and for the estimation of the topological entropy is demonstrated. To this end, numerical experiments on computation of finite-time local Lyapunov dimensions and finite-time topological entropy on a Rössler attractor and embedded unstable periodic orbits are performed. The problem of reliable numerical computation of the mentioned dimension-like characteristics along the trajectories over large time intervals is discussed. peerReviewed

Nonlinear Sciences::Chaotic Dynamicstime-delay feedback controlchaoshiddenself-excited attractorsLyapunov dimensionLyapunov exponentsunstable periodic orbit
researchProduct